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INTRODUCTION

Because of their utility as relational database scheme models, certain classes
of acyclic hypergraphs are important in a practical sense. These classes exhibit
a nonreversible hierarchy, i.e., Berge-acyclicity =. -y-acyclicity =; /-acyclicity =
a-acyclicity [1,2,4]. From a purely graph-theoretic standpoint, these degrees of
acyclicity can be characterized [3] by parallel degrees of chordality of simple graphs.

Here, the approach depends on a natural association of an abstract simplicial
complex S-H with a hypergraph H/, i.e., edges and their pairwise set intersections
determine, respectively, abstract simplices and their pairwise common faces. We
then choose a geometrical realization KH of SH and the new invariant X(7 ) is
defined as the Euler number X(K i) [7, p.124].

A new invariant for simple graphs is obtained by coupling the bijection G + f(G)
[1,3] (a graph G maps to the hypergraph f(G) of its maximal cliques) with the
hypergraph invariant. We calculate that X has value one for hypergraphs that
are connected a-acyclic by applying the Mayer-Vietoris sequence to show that the
homology of the associated complex K-H is trivial - several corollaries immediately
follow.

This construction is analogous to the well known construction [6] of the invariant
p = IVI - Z'(iEiEI - 1) for the class of Berge-acyclic (= a-acyclic) hypergraphs. In
the Berge case, a bipartite graph K1 (a one-dimensional complex) is associated with
a hypergraph and then the Euler number X(KI) is calculated. Here, a complex KIj
(of dimension - 1) is associated with a hypergraph 7- and then the Euler number
X(Kii) is calculated. We show (1) analogous to the Berge case, a hypergraph 'H is
connected a-acyclic = the complex KH is acyclic #. X(K-f) = 1; but (2) unlike the
Berge case, these implications cannot (in general) be reversed. As a result of this,
a new degree of hypergraph acyclicity, which we call h-acyclicity, is introduced and
we have: H is h-acyclic <* KHj is homologically acyclic.

DEFINITIONS

A hypergraph 7 is a pair (AC, 6), where Af is a finite set of vertices -and £ is a set
of (hyper)edges which are nonempty subsets of A. A hypergraph is reduced if no
edge is a subset of another edge. It will be assumed here that all hypergraphs are
reduced. A hypergraph is a-acyclic when it has the running intersection property,
i.e., there is an ordering (el..., e,) of its edges such that for each i, 2 < i < n, there
is a ji < i such that ei n (Uk<i ek) g ej,. Further, a hypergraph has the nonempty
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running intersection property when each of the n - 1 intersections ei nl ( Uk<i ek)
is not empty. For hypergraphs, the nonempty running intersection property clearly
implies both connectedness and a-acyclicity; and the converse follows by obtaining
a separation when one of the n - 1 intersections is empty. Indeed, if p is the number
of connected pieces and q is the number of empty intersections e, f" (Uk<i ek), then
p=q+l.

Let G be a loopless, undirected simple graph with vertex set V. Then G is chordal
if every cycle of length > 4 has a chord. A clique of G is a complete subgraph of
G. We let M(G) denote the family of subsets of V that induce maximal cliques of
G. The correspondence M = M(G) induces the bijection f which associates with
each simple graph G the hypergraph f(G) = (V, M) [1,3].

If S is a finite set, then the closure of S, C(S), is the family of nonempty
subsets of S. The closure of 7L, e(7-), is the union of the closures of its edges, i.e.,
C(7L) = UECC ce(E). The number of sets of cardinality k in CU(7-[), Ce(M(G)) is
denoted hk, gk. Finally, the maximum k for which hk # 0, gk 0 0 is denoted -H, M.

Let {ao,...,ak} be a set of geometrically independent points in R n . The k-
simplex (or simplex) 7k spanned by {ao, ... , ak} is the set of points x in Rn for
which there exist nonnegative real numbers A0,..., Ak such that x = i=0 Aiai and

Zi=O Ai = 1. In this case, {ao,... ,ak} is called the vertex set of ak. A face of ak is
any simplex spanned by a nonempty subset of {aO,..., ak}. A finite geometrical
simplicial complex (or complex) K is a finite set theoretic union of simplices such
that: (1) every face of a simplex of K is in K; and (2) the nonempty intersection
of any two simplices of K is a common face of each. Here we deal only with finite
simplicial complexes. Thus, the dimension of K is the largest positive integer m
such that K contains an m-simplex. The vertex scheme of K is the family of all
vertex sets which span the simplices of K. If {Li} is a family of subcomplexes of
K, then UiLi and fniLi (when not empty) are subcomplexes of K.

A finite abstract simplicial complex (or abstract complex) is a finite family S of
finite nonempty sets such that if A is in S, then so is every nonempty subset of
A. Accordingly, the vertex scheme of a complex is an abstract coriplex; and when
nonempty, a finite union of set closures and a finite intersection of set closures are
abstract complexes.

Two abstract complexes S and T are isomorphic when a bijection 4 from the
vertex set of S onto the vertex set of T satisfies {ao,...,a } E S if, and only
if, {(ao),... , 0(ak)} E T. Every abstract complex S is isomorphic to the vertex
scheme of some geometrical simplicial complex K. The complex K is then called
a geometrical realization of S and is uniquely determined (up to linear isomor-
phism). We denote an isomorphism between S and the vertex scheme of K by
S K. An edge e = {u,v} E S is a doubleton subset contained in S. A dis-
tinct pair of vertices u, v of S are path connected if there is an alternating sequence
U{U,XI}Xi{XX 2 } ... {xn,v}v of vertices and edges of S The abstract complex S is
connected when either S has only one vertex, or all pairs of its vertices are path
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connected. If S is connected, so is any geometrical realization of S.
To each simplicial complex K there corresponds a chain complex, i.e., for p

0,1,2,... there are abelian groups Cp(K) and homomorphisms 0p+l :Cp+1(K)
-.- Cp(K). If K is finite and 7ip(K) is the number of p-simplices in K, then the
rank of Cp(K) is 71p(K) , i.e., Cp(K) is isomorphic "=" to the direct sum "E" of
r7p(K) copies of the additive group of integers Z. The pth homology group of K,
Hp(K) = ker Op/im p+j, is finitely generated. The rank of Hp(K) is the ,ih betti
number bp(K). If K is connected, then Ho(K) "- Z. K is homologically trivial or
homologically acyclic if Hp(K) - 0 whenever p > 0 and Ho(K) - Z. The complex
of a simplex is homologically trivial.

PRELIMINARY LEMMAS

Several lemmas are required. The first three are well known and are repeated
here for completeness. The fourth is due to DAtri, et al [3].

Lemma 1 ([7,p. 142]) (Mayer-Vietoris). Let L be a complex with subcom-
plexes K and L' such that L = K U L'. Then there is an exact sequence

• ..-- Hp(K n L') - Hp(K)eHp(L') -+ Hp(L) -- H - (K n L') -- .--.

Lemma 2 ([8,p. 254]). Let A be an abelian group, F a free abelian group, and
9:A -+ F be onto. Then A " kerO E F.

Lemma 3 ([5,p. 242]) (Euler-Poincar4). If K is a complex of dimension m,
then

m m7 -P 7()= E(lPbp(K). (1)
p=O p=O

Lemma 4 ([3,p. 273]). A graph G is chordal if, and only if, f(G) is a-acyclic.

To obtain the new hypergraph invariant we start with the hypergraph -i = (A, E).
Intuitively, we wish to make each edge E E £ into an abstract simplex - this
amounts to considering the family CE(E). And intuitively, we wish to make 'H into
an abstract simplicial complex - this amounts to considering the family CR(1i).
We then associate CC(1t) with one of its geometric realizations K = K(CU("i)).
The new hypergraph invariant can then be defined as the Euler-Poincar6 invariant
of this simplicial complex K, i.e., the Euler number or value of either the right
or left side of (1). Similarly, the new invariant for graphs G can be defined as the
Euler-Poincar6 invariant of the simplicial complex K(CR(f(G))). Consequently, the
first step in constructing the hypergraph invariant involves the operator C. The
next lemma provides the key properties of C. The proof is straightforward and is
therefore omitted.
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Lemma 5. Let {Si I i E I} be a collection of nonempty finite sets. Then the
following statements are true.

(1) A c B <* Ce(A) C C(B);
(2) ni Ce(Si) = Ce(n1Si);
(3) Ui CE(Si) C CU(UiSi);

(4) 0=AnB ,0# 0 C(A) nC(B); and
(5) 0 0 A ,* 0 # Ce(A).

Lemma 6. The operator Ce preserves the (nonempty) running intersection prop-
erty. That is, if (S 1,... , S.) has the (nonempty) running intersection property,
then the ordered set (Ce(S,),... ,Ce( S)) has the (nonempty) running intersection
property.

PRCOF: Write Si n (Uk<iSk) = Uk<i(Si n S). Then each addend on the right is
a subset of Sj,, and by (1) and (2) of Lemma 5 each addend (Ce(Si) n Ce(Sk))
of the corresponding union is a subset of Ce(Sj,). Thus, the operator Ce preserves
the running intersection property. To see that the "nonempty condition" is also
preserved by Ce, note that if one of the addends Si l Sk is not empty, then by
(4) Lemma 5 the corresponding addend Ce(Si) n C(Sk) must also be nonempty.
Thus, C also preserves each of the n - 1 "nonempty conditions.",

Lemma 7. Let (S,,... , S,) have the running intersection property. if S' = Si n
(Uk<iSk), then

ce(s') = ce(Si) n (uk<CR(sk)).

PROOF: Again, write S' = Si l (Uk<iSk) = Uk<i(Si nl Sk). Then, for a nonempty
set A, applications of Lemma 5 and the definition of ce can justify the following
statements and finish the proof:

A E Ce(S') * A c S' - A C Sin Sk for some k < i
<*A E Ce(Si fl Sk) for some k < i
4A E uk<ct(S n Sk)

<*A E uk<i(Ce(Si) n Ce(Sk))
€ A e Ce(Si) n (Uk<iC(S)).l-

Lemma 8. Let H = (AP, E) be a hypergraph. Then S 1 = Ct(1-) = UEE6 C(E)
is the abstract simplicial complex associated with It. Let K be a geometrical real-
ization of S,1 . Then K-1 = K is called a geometrical simplicial complex associated
with -1. If (E,... , E,) is an ordering of E that satisfies the nonempty running
intersection property,

(1) then let the simplex K, of K 1 correspond to the simplex Ce(E,) of Sn;

4



NAVSWC TR 91-323

(2) then the subcomplex Li of K-j corresponding to the subcomplex Uk<,Ce(Ek)
of S is connected; and

(3) then the simplex Ki nl Li of Ku necessarily corresponds to the simplex
Ct(Ej) n (Uk<iCe(Ek)) of Sn.

PROOF: Since S-,x K-H, we only need to show (1') Ce(E,) is a simplex of SH,;
(2') Uk<iCf(Ek) is a connected subcomplex of Sxj; and (3') C(E) n (Uk<jCe(Ek))
is nonempty and a simplex SH. But (1') follows from S-H = UEee Cf(E) and the
definition of an abstract simplex; (2') follows from an induction argument on i > 2
and the "nonempty condition"

0 0 Ct(Ej) n (uk,<icfcE,));

and (3') follows from this "nonempty condition," Lemma 7, and the definition of
an abstract simplex.u

ACYCLIC HYPERGRAPHS

With the terminology developed above, we can prove:

Theorem 9. If 7-f is a connected o-acyclic hypergraph, then any associated geo-
metrical simplicial complex Kj is homologically trivial.

PROOF: Using the notation of Lemma 8, we let i E .2,... ,n} be fixed and consider
the simplices K, l Li and Ki U L. = Li+,. From Lemma 1 there is an exact sequence

... --- Hp(Ki n Li) -- Hp(K) E Hp(Li) --+ H(Li+,) -- HpI (Ki n L2 ) -- -.-.

Some of these groups are easily calculated. For example, since K, and K, nl L, are
simplices,

Hp(KI) Hp(Ki n L ) - 0 (p > 1) (2)

and
Ho (Ki) c- Ho (K i n L j) !-- Z. (3)

Accordingly, substitution of (2) and (3) into the Mayer-Vietoris sequence induces
two relevant exact sequences:

0-- Hp(Li) - Hp(Li+,) -*0 (p >_ 2) (4)

and

0 " 0 H, (Li) H, (Li+,) -5Z --7' 9H(+)ZH(L+) "" 5

Since i > 2 is arbitrary, the exactness of (4) yields

Hp(L 2) -- Hp(L 3 ) -.. Hp(L,+1 ) = Hp(K). (p > 2) (6)
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For p > 2 the first group Hp(L 2) in (6) is 0 since L 2 is a simplex. Whence, (6)
shows

Hp(K) = 0 (p >_ 2)_ (7)

To calculate the homology for K in dimension p = 1, we use the sequence (5): The
exactness of (5) insures 0 is surjective. Then Lemma 2, where HO(Li+1 ) free abelian
and 0 onto, and the exactness of (5) give

Z (D Ho(Li) t- ker0 ( Ho(Li+,) = im 7r ED Ho(Li+,). (8)

From Lenmna 8 Li, L;.F. are connected. Since Ho(Li) - Z Ho(Li+i) we substitute
Z into (8) and obtain

Z@ Z - im7r E Z. (9)

From (9) im-r Z and hence 7r is injective (ker7r = 0). So, the exactness of (5) at
Z yields an exact sequence (4) for p = 1:

0 - H(Li) - HI(Li+,) A 3 (p= 1 ). (10)

Therefore, since i > 2 is arbitrary, (10) shows that (6) also holds for p = 1. Repeat-
ing the argument above, for p = 1 the first group Hp(L 2) in (6) is 0 since L 2 is a
simplex. Ergo, (6) for p = 1 assigns

HI(K) =0. (11)

Consequently, L,,+ = K connected, (7), and (11) show K is homologically trivial.1

Corollary 10. If 7- is a connected a-acyclic hypergraph, then

Z(l=kl 1. (12)
k=1

PROOF: Because of the one-one correspondence between the k - 1 dimensional
simplices of K = K-u and the sets of size k in the family Sg = Ct(7-) we have
dim(K) = 7- - 1 and .?k-l(K) = hk. The validity of the equation (12) now follows
from these observations, Theorem 1, and the appropriate substitutions in the Euler-
Poincar6 formula (1).1

Corollary 11. If G is a connected chordal graph, then

= 1. (13)

k=l

PROOF: First, we apply Lemma 4: Let the connected chordal graph G correspond
to the connected a-acyclic hypergraph f(G) = 7"X. Observe that gk = hk (and
hence q = W). The validity of (13) is a consequence of these observations and
appropriate substitutions in (12).1

6



NAVSWC TR 91-323

Corollary 12. If W-t is an a-acyclic hypergraph, then X(W) is the number p of
components of H.

PROOF: Let {"-t} be the set of connected components of H-; let {K,} be a pairwise
disjoint set of associated geometrical realizations, i.e., for each t, Kt is associated
with 7/t. Let K 1 = Vt Kt be the disjoint union of the Kt. Furthermore, let
(E,. . ., E,,) be an ordering of the edges of W- that satisfies the running intersection
property and, for each t, let V denote the vertex set of the component Wt. Then
the induced ordering of the nonempty sets in the list (E l Vt,... ,E. n Vt) is
an ordering of the edges of 1t that satisfies the nonempty running intersection
property. So, according to Theorem 9, X(7/t) = I for each component W-t. To finish

the proof recall that the pth betti number bp(Ift) of a disjoint union K-H = Vt Kt
of complexes Kt is the sum E"t bp(Kt) of the betti numbers bp(Kt). I

EXAMPLES AND h-ACYCLIC HYPERGRAPHS

Analogous to the Berge case, we have (by Theorem 9):

W connected a-acyclic =- KH7 homologically acyclic = x(Kn) = 1. (14)

Unlike the Berge case however, the two implications in (14) cannot (in general)
be reversed. For sure, two simple examples suffice to show no two of the three
statements in (14) are equivalent.

First, for -1 connected, we see

- connected a-acyclic f KH homologically acyclic (15)

by considering the hypergraph W = (Ar, E) with four vertices, 1, 2, 3, x, and three
edges {1, 2,x, {1, 3,x, 12,3, x}. Indeed, not one of the six possible orderings of E
satisfies the running intersection property while K 1 is isomorphic to a triangulation
of a closed 2-disc.

Second, we show for -( connected,

K7 homologically acyclic J& x(K)= 1. (16)

To see that (16) holds, observe that for a given complex K, we can define AK as the
vertex set of K and we can define an edge set E by: E E E when E C A and the
vertices in E span a simplex of K. Then the hypergraph 7/K = (At, C) has K as an
associated complex (if £ contains only those subsets that span maximal simplices
of K, then H would be reduced).

So for W connected (whence 1(71 connected), (16) is an instance of

K homologically acyclic I x(K) = 1 (17)

7
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for a connected complex K. But (17) is well known: Identify one point of a 2-sphere
with one point of a 1-sphere (circle) and let K be a triangulation of this quotient.
Then

x(K) = E bp(K) = bo - b, + b2 = -1+ 1 = 1
P

but K is not homologically acyclic.
Since the first two simple statements of (14) are not equivalent, but the first

implies the second, the concept of acyclicity in homology induces a new degree of
acyclicity for hypergraphs.

More precisely, call a hypergraph h-acyclic when an associated complex has each
of its connected components homologically acyclic. With this definition "ve have
the following degrees of acyclicity for (not necessarily connected) hypergraphs:

Berge-acyclic =>' -y-acyclic ==> fl-acyclic => a-acyclic =.€ h-acyclic. (18)

And each of the implications in (18) is (in general) not reversible.

REMARKS

In recent years, much research has been devoted to the study of 0-acyclic (9 =
a, P3, -y, Berge) relational database schemes. It has been shown that such schemes en-
joy certain desirable properties, e.g., they have monotone join expressions. Because
of their utility, the recognition of such schemes is an important design issue and
elaborate recognition algorithms have been developed to assist in this capacity. As
a fundamental application of -our research, we note that since the Etiler-Poincari
invariant is readily calculated for the simplicial complex associated with any re-
lational database scheme, it may be used along with the contrapositive forms of
Corollaries 10 and 12 to easily determine if a database scheme is not acyclic.

We define an h-acyclic database scheme as one having an h-acyclic hypergraph
as its scheme model and observe that an arbitrary database scheme can be made
h-acyclic by including an identical attribute in each relation. This follows since
the resulting scheme has a cone as its associated simplicial complex and is thus
homologically trivial.

A cover of a simplicial complex K is a family of subcomplexes £ = { L a G E A }
with K = UaLa. £ is an acyclic cover if each La and each finite intersection flL,

are homologically trivial. With this, we offer the following conjecture concerning
conditions equivalent to h-acvclicity: Conjecture. Let R be a database scheme.
The following conditions on R are equivalent:

(1) R is an h-acyclic hypcrgraph.
(2) Graham's algorithm I1, p. 4841 terminates with a set S -uch that C(S) is

homologically tivial.
(3) CL(R) has an acyclic cover with the running intersection property.

8
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